Synthesis and structural characterization of niobium-doped hydroxyapatite ceramics
 
More details
Hide details
CORRESPONDING AUTHOR
Wojciech Korzeniewski
wojciech.korzeniewski@pg.edu.pl
Agnieszka Witkowska
agnieszka.witkowska@pg.edu.pl
 
Engineering of Biomaterials 2019;(150):10–15
 
KEYWORDS
ABSTRACT
Hydroxyapatite (HAp) ceramic materials are considered as one of the most promising implant materials in bone surgery and in dentistry. They exhibit unique biocompatibility, bioactivity, and osteoconductivity, which are the most desirable biomaterial features. However, HAp itself is brittle, has low strength, high degree of crystallinity and low solubility at physiological pH. Doping synthetic HAp with metal ions plays an important role in improving its structural and physico-chemical properties. HAp doped with niobium ions has not been widely investigated so far. However, the results of studies available in the literature show that the synthesized CaO-P2O5-Nb2O5 compounds still show good biocompatibility, very low cytotoxicity and, additionally, they stimulate osteoblast proliferation. Therefore, this study is dedicated to the niobium-doped HAp ceramics obtained by two methods: mechano-chemical synthesis and sol-gel method. Bioceramics chemical composition, morphology, and structure were characterized by means of scanning electron microscopy imaging, BET method, X-ray diffraction, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The results indicate that nanoceramics of non-stoichiometric HAp with a clear Ca deficiency on the nanograin surface were obtained. Moreover, it has been observed that the presence of Nb dopants and the synthesis method directly affect unit cell parameters, crystallinity degree, crystallites size, porosity and distribution of niobium in the grain structure. Mechano-chemical synthesis has allowed effective niobium incorporation into the HAp structure, leading to the quite homogeneous Nb distribution in the grain volume. Whereas, Nb-doping by sol-gel method has led to dopants location mainly on the grain surface.
ISSN:1429-7248