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Abstract

The escalating accumulation of microplastics in the en-
vironment has emerged as a critical global issue, with
significant implications for ecosystems and human health.
Among the most prevalent and hazardous types are poly-
styrene microplastics (PS-MPs), widely derived from food
packaging, insulation materials, and disposable consumer
products. Due to their durability, low density, and resist-
ance to degradation, PS-MPs are persistent pollutants
that fragment into micro- and nanoplastics, infiltrating
water, air, soil, and the food chain. Recent studies have
confirmed their presence not only in diverse environmental
matrices but also in human tissues, including the blood,
lungs, liver, brain, and placenta. These particles have been
shown to induce cellular stress, disrupt gene expression,
alter microbiota, and trigger inflammatory and oxidative
responses. This review provides a comprehensive over-
view of PS-MPs, highlighting their environmental distribu-
tion, exposure pathways, organ-level accumulation, and
toxicological mechanisms. It also explores the analytical
methods used for detection, such as Raman spectros-
copy, FTIR, and pyrolysis-GC/MS. By identifying current
knowledge gaps and future research priorities, this work
underscores the urgent need for standardized methodolo-
gies and interdisciplinary strategies to assess, monitor,
and mitigate the impact of PS-MPs on public health and
the environment.
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Introduction

The exponential growth in plastic production and consump-
tion over recent decades has resulted in an alarming surge
in microplastic pollution, prompting critical concerns regard-
ing environmental sustainability, food security, and human
health. Microplastics, commonly defined as plastic particles
smaller than 5 mm [1], have been detected across virtually
all ecosystems, including marine, freshwater, terrestrial, and
even atmospheric environments [2]. These particles originate
from both primary sources (e.g., microbeads in cosmetics)
and secondary fragmentation of larger plastic debris [3].
Among the numerous synthetic polymers contributing to
this global issue, polystyrene (PS) is particularly prominent
due to its widespread application, unique physicochemical
properties, and emerging evidence of adverse biological
interactions [4], [5].

Polystyrene is a colourless, brittle, and lightweight thermo-
plastic derived from styrene monomers through free radical
polymerization [2]. It is widely employed in the manufacture
of disposable food containers, foam insulation, packag-
ing materials, and various consumer products due to its
low cost, moldability, and transparency [2]. However, its
environmental persistence, hydrophobicity, and resistance
to biodegradation render it especially prone to long-term
accumulation in natural systems [4] [6] [7]. As PS products
degrade under physical, thermal, photolytic, and chemi-
cal stressors, they generate micro- and nanoplastic frag-
ments that can travel significant distances, infiltrating food
webs, and bioaccumulating in diverse organisms [3], [6],
[8]. Polystyrene degradation in environmental conditions
involves multiple interconnected processes. Primary deg-
radation occurs through UV-initiated photooxidation, where
the aromatic phenyl groups absorb UV radiation (A=260
nm), transferring energy to adjacent C-H bonds and causing
radical formation. This process generates ketones, carbox-
ylic acids, aldehydes, esters, and lactones while reducing
particle size at rates of approximately -24 + 3.0 nm h-" under
controlled UV exposure [9], [10]. Environmental lifetime
studies demonstrate that sunlight exposure dramatically
reduces PS persistence compared to dark conditions. Re-
cent research indicates that under peak terrestrial sunlight
conditions, submicron PS particles (1000 nm) may degrade
to nanoscale dimensions (1 nm) in less than 500 hours. This
represents a significant revision from earlier assumptions
of millennial-scale persistence, with photodegradation rates
being 10-100 times faster than previously estimated [9], [11].
Mechanical fragmentation complements chemical degrada-
tion through wave action, sediment abrasion, and thermal
cycling. Weathered PS exhibits increased fragmentation
susceptibility due to surface oxidation and embrittlement.
Combined UV-mechanical stress results in exponential frag-
mentation patterns, with smaller particles exhibiting higher
surface area-to-volume ratios and accelerated degradation
kinetics [12], [13], [14].

Lifetime prediction models indicate PS persistence varies
dramatically with environmental conditions:

e Marine surface waters: 10-100 years (high UV ex-
posure)

¢ Deep ocean/sediments: 100-1000 years (limited UV
penetration)

e Terrestrial soils: 50-500 years (variable UV/tempera-
ture conditions)

¢ Arctic/polar regions: 500+ years (reduced UV intensity,
low temperatures)

These estimates incorporate recent advances in photo-
degradation kinetics but remain subject to considerable
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uncertainty due to variability in environmental stressors,

® o @ o o o o polymer formulations, and additive compositions [9], [11],

[14]. The varying environmental persistence of polystyrene
directly reflects its global distribution. Recent studies have
reported the presence of polystyrene microplastics in a broad
array of environmental matrices, including surface waters,
sediments, soils, and atmospheric fallout [3], [6]. These
particles are frequently found in drinking water, seafood, and
agricultural produce, suggesting multiple exposure pathways
for both wildlife and humans [6], [15], [16]. More alarmingly,
PS microplastics have now been detected in human tissues
such as blood, lungs, liver, placenta, and brain, indicating
their ability to cross physiological barriers and accumulate
in critical organs [5], [17], [18], [19], [20], [21].

At the cellular and organismal levels, PS micro- and nano-
plastics have been shown to induce a range of toxicological
effects. In vitro and in vivo studies reveal that these particles
can provoke inflammatory responses, disrupt the gut micro-
biome, impair cellular metabolism, alter gene expression,
and generate oxidative stress, potentially contributing to
chronic diseases and reproductive toxicity [2], [5], [22], [23].

The likelihood of systemic translocation and cellular in-
ternalization depends not only on particle size, with smaller
nanoplastics posing a higher risk, but also on the polymer
type, surface properties, and adsorbed substances, which
influence their interactions with biological barriers. Nanoplas-
tics, in particular, can traverse the blood-brain and placental
barriers, posing an acute threat due to their ability to reach
sensitive organs [17], [18]. Recent studies have demon-
strated that both polystyrene (PS) and polyvinyl chloride
(PVC) nanoplastics can cross the blood-brain barrier, with
PVC particles exhibiting a higher penetration rate. However,
the presence of a biological corona significantly reduced the
amount of nanoplastics entering the brain, highlighting the
complex interplay between particle composition and biologi-
cal interactions [24]. Despite recent advancements in ana-
lytical chemistry and toxicology, significant knowledge gaps
remain regarding the fate, transport, and long-term effects
of PS microplastics in living organisms. The heterogeneity
of PS particles in terms of size, shape, surface chemistry,
and environmental weathering further complicates risk as-
sessment and regulation [4], [25]. Therefore, this review
aims to provide a comprehensive synthesis of the current
state of knowledge on polystyrene microplastics, focusing
on their environmental sources, routes of human exposure,
tissue distribution, toxicological profiles, and methods of
detection. By consolidating recent research findings, we
seek to elucidate the role of PS in the broader microplastic
crisis and identify scientific and policy-oriented strategies
to mitigate its impact on ecosystems and human health.

Microplastics in Tissues

Following environmental exposure, microplastics can enter
the human and animal body through three principal pathways:
ingestion, inhalation, and, to a lesser extent, dermal contact
[6], [17], [26], [27], [28], [29]. The most common route is the
ingestion of contaminated food and water, including seafood
and agricultural products [27], [29], [30], [31]. Inhalation of
airborne particles, especially in urban or indoor environ-
ments, represents a significant additional source [26], [32],
[33]. While dermal absorption of microplastics is still under
investigation, current evidence suggests that its contribu-
tion is minimal compared to the other routes [15], [26], [34].
Once internalized, microplastics can accumulate in various
tissues and organs, including the lungs, intestines, liver, kid-
neys, placenta, and even the brain [5], [17], [18], [19], [20],
[21]. Particularly concerning are nanoplastics, which, due to
their small size and high surface activity, can cross biologi-
cal membranes and enter systemic circulation, potentially
reaching distant and sensitive tissues [35], [36], [37], [38],
[39]. Animal studies have revealed widespread microplastic
accumulation in aquatic organisms such as fish, mollusks,
seabirds, and marine mammals [6], [40], [41]. While these
particles are most often found in the gastrointestinal tract,
increasing evidence confirms their presence in secondary
tissues like liver and muscle, suggesting systemic distribution
[42], [43], [44], [45]. Terrestrial animals, including livestock
and domestic pets, have also been shown to ingest and ac-
cumulate microplastics, which may pose risks for food safety
and human co-exposure [46], [47], [48], [49]. From an eco-
toxicological perspective, microplastics have been shown to
induce a variety of adverse effects in animal models, including
immune dysregulation, oxidative stress, endocrine disrup-
tion, and reproductive toxicity [6], [50], [51], [52]. Moreover,
microplastics can act as carriers for hazardous substances
such as heavy metals, persistent organic pollutants, and
pathogenic microorganisms, thereby enhancing their overall
toxic potential [53], [54]. In humans, microplastics have been
detected in multiple tissues using advanced spectroscopic
and imaging techniques [55], [56], [57]. Particles composed
of polystyrene, polyethylene, polyvinyl chloride, and polyeth-
ylene terephthalate have been found in the lungs, intestinal
tract, liver, bloodstream, and placenta [58], [59]. Concentra-
tions tend to be highest in organs directly exposed to the
external environment, such as the lungs and intestines [17],
[57], [60]. Evidence also indicates that smaller particles can
cross the blood-brain and placental barriers, raising concerns
about potential neurodevelopmental and systemic impacts
[35], [61], [62], [63]. Examples of the presence and effects
of microplastics in human tissues are presented in Table 1.

TABLE 1. Presence and effects of microplastics detected in selected human tissues and organs

. Main Microplastic Average Abundance o
Tissue/Organ Notable Effects Bibliograph
9 Types (particles/g) gIEphy
Infl ti idati 171, [64], [65
Lung PVC, PE, PS Up to 14.2 nflammation, oxidative [17], [64], [65],
stress [66]
Intesti I/
n eslrrzgma PVC, PE, PET 6-9.5 Dysbiosis, barrier disruption [17], [23]
Liver Not always quantified Data emerging Possible metabolic impacts [17], [67], [68]
. . Altered gene expression, [171, [19], [69],
PI t PE, P Itiple t V. |
acenta , PS, multiple types ariable inflammation [70]
Nanoplastics also Correlated with vascular
V. I t Mi 17], [711, [72
ascular system ixed detected disease (171, [71], [72]




At the cellular level, exposure to microplastics has been
associated with inflammation, oxidative damage, apoptosis,
mitochondrial dysfunction, and impaired cellular signalling.
In vitro and animal studies suggest that smaller particles
(<100 nm) pose greater risks due to enhanced cellular
uptake and intracellular reactivity [73], [74], [75].

Despite growing evidence of tissue-level accumula-
tion and biological effects, major knowledge gaps remain.
These include insufficient data on long-term exposure
outcomes, a lack of standardized analytical protocols for
tissue analysis, and a limited understanding of how particle
properties (e.g., size, shape, surface chemistry) influence
toxicity. Addressing these gaps will be crucial for accurate
risk assessment and effective regulation of microplastics
in both environmental and biomedical contexts.

Polystyrene in Human Tissues

Polystyrene (PS) is one of the most encountered synthetic
polymers in the environment, primarily used in food packag-
ing, insulation foams, and disposable consumer products [4],
[76], [77]. Through the fragmentation of larger plastic waste,
polystyrene microplastics (PS-MPs) are defined as formed
particles smaller than 5 mm [2]. Due to their persistence and
mobility in various environmental media, PS-MPs are in-
creasingly recognized as a potential threat to human health.
With a density of approximately 1.05 g/cm?, PS particles can
remain suspended in water, facilitating their distribution in
aquatic ecosystems and eventual entry into the food chain
[78], [79]. Their physical and chemical properties, such as
chemical resistance and optical clarity, contribute to their
environmental accumulation and bioavailability.

In recent years, PS-MPs have been identified in multiple
human tissues, including blood, lungs, liver, kidneys, brain,
and placenta [21], [55], [58]. Particularly concerning are
reports indicating their presence in a significant proportion
of blood samples and their ability to cross critical biologi-
cal barriers, including the blood—brain barrier [55]. These
findings highlight the urgent need to better understand the
mechanisms of PS-MP accumulation in the human body
and their potential health implications.

Exposure and Distribution in the Body

Human exposure to PS-MPs occurs primarily via ingestion,
inhalation, and, to a lesser extent, dermal contact [19].
Studies have shown that PS particles can penetrate the
digestive and respiratory systems and, in certain cases,
cross biological membranes. Nanoplastics — particles in the

nanometre range — are of particular concern due to their
capacity to breach the intestinal and blood—brain barriers
[79], [80].

Initial evidence of PS-MPs in human blood has demon-
strated their systemic circulation, with polystyrene ranking
among the most frequently detected polymer types [20],
[21]. Analytical methods such as pyrolysis—gas chromatog-
raphy—mass spectrometry have confirmed the presence of
PS particles ranging in size from submicron to hundreds of
microns [21], [56].

Organ-Specific Accumulation

The lungs serve as a primary target for PS-MPs introduced
via inhalation. Animal studies have shown that particle
size influences deposition patterns, with smaller particles
more likely to penetrate deep into lung tissues. Long-term
exposure may contribute to pulmonary fibrosis, driven by
inflammatory and ferroptotic mechanisms [22].

The liver, due to its central role in detoxification, is
highly susceptible to PS-MP accumulation. In vitro and
in vivo models have demonstrated the translocation of
particles from the gut to the liver, resulting in oxidative
stress and hepatocellular damage. Chronic exposure may
lead to fibrotic changes and disruptions in lipid metabolism
[42], [81].

The kidneys are another sensitive target. Research has
shown that PS-MPs can induce mitochondrial dysfunc-
tion, endoplasmic reticulum stress, and autophagy in renal
tubular cells. These processes may contribute to cellular
senescence and kidney fibrosis [5], [82].

The brain is also vulnerable to PS-MP accumulation.
Studies have shown that PS particles can be detected in
brain tissue within hours after oral exposure. A key mecha-
nism is the formation of a biomolecular corona on particle
surfaces, facilitating their passage across the blood—brain
barrier. Accumulation in neural tissue has been associated
with neurological and behavioural alterations [55], [61],
[83], [84].

Finally, the placenta represents a particularly concerning
site of PS-MP accumulation. Studies have identified PS
particles in all examined placental samples. Exposure has
been linked to cytotoxicity, oxidative stress, and metabolic
disturbances, raising concerns about fetal development
and transplacental transfer of microplastics [19], [70]. The
sources of polystyrene microplastic exposure, degradation
pathways, routes of entry into the human body, and target
organs for accumulation are presented in FIG. 1.

FIG. 1. Polystyrene microplastics: sources, exposure, degradation pathways, and organ accumulation
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Analytical Methods for the Detection of

.......PS-MPS

Polystyrene microplastics (PS-MPs) have been increasingly
detected in various human tissues, raising concerns about
their potential health impacts. Accurate identification and
quantification of PS-MPs are essential for understanding
exposure levels, biological distribution, and toxicological
effects. This chapter offers a comprehensive examination of
the prevalent analytical methods employed to detect poly-
styrene microparticles (PS-MPs) within biological samples.
It delves into the underlying principles of these techniques,
elucidates their respective advantages, and discusses the
limitations associated with each approach.

Spectroscopic Techniques

Fourier-transform infrared spectroscopy (FTIR) is among
the most used methods for identifying PS-MPs. It relies on
characteristic vibrational modes of chemical bonds, though
its detection limit is generally restricted to particles larger
than 20 ym [85]. Micro-reflectance FTIR (u-TR-IR), when
combined with multivariate analysis such as principal com-
ponent analysis (PCA), demonstrates enhanced sensitivity
in detecting PS-MP degradation compared to conventional
ATR-IR [85], [86].

Raman spectroscopy provides superior spatial resolution
(down to 1 um) and is especially valuable for identifying PS-
MPs in complex biological samples. The characteristic peak
for PS appears at 1002 cm™ (corresponding to the aromatic
ring breathing mode), which is unique to polystyrene com-
pared to PE or PP. This peak is absent in other common
microplastics, such as polyethylene (PE) or polypropylene
(PP), enabling PS identification even in mixed polymer sam-
ples. Raman mapping allows for precise localization and
quantification of PS particles ranging from 400 to 2600 nm
[80], [87], [88], [89].

Surface-enhanced Raman spectroscopy (SERS) shows
promise for detecting PS-MPs at the nanoscale, reaching
detection limits as low as 6.5 pg/ml. This method utilizes
gold nanoparticles to amplify Raman signals, allowing trace-
level analysis [90].

Chromatographic Techniques

Pyrolysis—gas chromatography—mass spectrometry (Py-GC/
MS) is considered the most sensitive and specific method for
analysing PS-MPs through analysis of characteristic thermal
degradation products. It enables both identification and quan-
tification based on characteristic pyrolysis products such as
styrene monomers, dimers, and trimers, which result from
terminal and random [3-scission of the polymer backbone.
The optimal pyrolysis temperature for PS is approximately
600°C. These pyrogram signatures are polymer-specific and
enable the unambiguous identification of PS even at trace
levels. The accuracy of this technique depends on the use
of polymer standards, as molecular structure significantly
influences pyrolytic efficiency and decomposition profiles.
Moreover, co-pyrolysis interactions between different types
of microplastics can complicate quantitative analysis [21],
[91], [92].

Microscopic Techniques

Fluorescence microscopy using selective dyes is effective
for preliminary screening of PS-MPs. Fluorescein exhibits
the strongest fluorescence enhancement with PS com-
pared to other polymers, allowing for selective detection in
biological matrices. This approach is relatively simple and
fast. Scanning electron microscopy (SEM) provides detailed
morphological information, such as surface roughness, deg-

radation features, and presence of biofilms on PS particles.
When combined with energy-dispersive X-ray spectroscopy
(EDX), elemental composition analysis of the particle surface
is also possible [88], [93].

Emerging Analytical Techniques

Fluorescently labelled peptide-based mass spectrometry,
combined with electrochemical impedance spectroscopy
(EIS), offers selective detection of PS-MPs in various water
matrices. Detection limits reach 50 ppb in distilled and tap
water, and 400 ppb in saline water [94]. Flow cytometry
enables rapid particle counting and characterization based
on light scattering and fluorescence, which is particularly
useful for studying cellular uptake kinetics of PS-MPs [95].
Engineered peptides show specific binding affinity for PS
versus other polymers, with up to six-fold higher capacity
for PS compared to random DNA sequences [96], [97].
The main analytical techniques used to detect polystyrene
microplastics in human tissues are illustrated in FIG. 2.

FIG. 2. Analytical techniques for detecting polysty-
rene microplastics in human tissues

The Impact of Microplastics on Human
Health

The build-up of microplastics within the human body has
generated substantial concern over the potential impli-
cations these might have on health outcomes. Emerging
research suggests that microplastics may trigger a range
of adverse biological responses, including inflammation,
oxidative stress, and endocrine disruption. In response
to growing environmental concerns, the European Union
implemented Regulation (EU) 2023/2055, effective from 17
October 2023. This regulation restricts the use of synthetic
polymer microparticles intentionally added to products,
aiming to reduce microplastic emissions and protect the
environment. The restriction applies to various products,
including cosmetics, detergents, fertilizers, plant protec-
tion products, and certain medical devices [98]. The World
Health Organization (WHO) has acknowledged the poten-
tial risks associated with microplastics and recommends
monitoring their presence in drinking water and other en-
vironmental media. WHO emphasizes the need for further
research to assess the health risks of microplastics and to
inform appropriate management actions [99]. This chapter
examines the current evidence on the health effects of
microplastic exposure, with a focus on both localized and
systemic impacts.



Cellular Toxicity Mechanisms

Polystyrene microplastics cause oxidative stress by in-
creasing ROS production and interfering with essential
antioxidant enzyme activities. Studies have demonstrated
that they inhibit superoxide dismutase (SOD2) and cata-
lase activity in cells exposed to PS-MPs [100], [101]. The
resulting oxidative stress damages DNA and protein, poten-
tially initiating carcinogenic pathways [102] The size of PS
particles significantly influences the intensity of oxidative
stress in mouse hepatocytes [101]. The toxicity mecha-
nisms of PS-MPs also influence the distribution of cellular
metabolism and gene expression [67]. Combined exposure
to microplastics with other pollutants, such as triphenyl
phosphate (TPHP), enhances toxic effects in HepG2 cells
[103]. Enzymatic biomarkers indicate a wide spectrum of
cellular function disruptions, including acute and chronic
exposure effects [104].

Impact on the Respiratory System

Chronic exposure to polystyrene microplastics causes se-
vere pulmonary damage and fibrosis development. Animal
studies demonstrate that PS-MPs induce pulmonary fibrosis
through activation of the cyclic GMP-AMP synthase (cGAS)/
stimulator of interferon genes (STING) signalling pathways
and promotion of ferroptosis in alveolar epithelial cells
(AECs) [22], [66]. Mechanistically, PS-MPs exposure results
in characteristic ferroptosis markers, including significant
glutathione (GSH) depletion, increased malondialdehyde
(MDA) levels, and iron overload in lung tissue and alveolar
epithelial cells [64], [105]. These biochemical changes
trigger oxidative stress-mediated cell death pathways that
contribute to progressive pulmonary fibrosis [65]. Moreover,
the size-dependent effects of polystyrene particles further
influence toxicity mechanisms, with nanoscale particles
(PS-NPs) causing ferroptosis through ROS-dependent en-
doplasmic reticulum stress and mitochondrial dysfunction.
Ferritinophagy mediated by oxidative stress-driven mito-
chondrial damage plays a crucial role in PS-NP-induced
ferroptosis and subsequent lung injury [106], [107].

Impact on the Reproductive System

Polystyrene microplastics demonstrate specific toxicity to re-
productive tissues. Exposure of human placental explants to
5 um PS-MPs leads to time-dependent cytotoxicity, oxidative
stress, and metabolic disruption [70]PS-MPs significantly
reduce the activities of key antioxidant enzymes, including
catalase, superoxide dismutase (SOD), and peroxidase, in
reproductive tissues [108], [109]. Chronic exposure causes
testicular toxicity through decreased testosterone levels
and impaired spermatogenesis [110], [111]. In the female
reproductive system, PS-MPs induce ovarian dysfunction
through oxidative stress and apoptosis in ovarian tissues
[112]. Gestational exposure results in placental damage and
metabolic disorders, disturbing the maternal-fetal immune
balance [113], [114].

Carcinogenic Potential

Discovered evidence suggests polystyrene microplastics
(PS-MPs) may exhibit carcinogenic properties through
metabolic reprogramming mechanisms. In normal human
colon cells, PS-MPs induce metabolic rewiring like cancer
metabolism, including enhanced glycolysis and increased
glutamine utilization to sustain anabolic processes [115],
[116]. These metabolic changes in colon cells resemble
those induced by carcinogens, raising concerns about long-
term exposure effects. PS-MPs activate the Wnt/B-catenin
signalling pathway, which plays a crucial role in cancer
development [117], [118].

Innovations and Challenges in
Microplastic Research

Microplastic research is rapidly evolving, driven by advances
in analytical technologies and a growing awareness of en-
vironmental and health risks. Despite significant progress,
the field continues to face key challenges, including the
standardization of methods, the detection of nanoplastics,
and the assessment of long-term biological effects.

Standardization of Analytical Methods

One of the major challenges in PS-MP research is the lack
of standardized analytical protocols. Variability in sample
preparation methods across laboratories significantly hin-
ders cross-study comparability and meta-analyses [25].
The development of certified reference materials and har-
monized protocols is urgently needed to establish robust
inter-laboratory validation frameworks. Equally important is
the engineering of environmentally relevant PS-MP mod-
els. Most current studies rely on commercially available
polystyrene microspheres, which differ substantially from
environmentally weathered particles in terms of morphol-
ogy, surface oxidation, chemical composition, and adsorbed
contaminant profiles [25], [119]. The implementation of
controlled weathering protocols that simulate realistic en-
vironmental aging processes can significantly improve the
ecological relevance and translational value of toxicity stud-
ies [25], [120], [121].

Advanced Analytical and Experimental Platforms
Raman mapping holds great promise for high-resolution
detection of submicron PS-MPs. Future research should
focus on improving detection sensitivity for particles smaller
than 1 ym [122]. Microfluidic organ-on-a-chip models, such
as gut-liver systems, offer physiologically relevant platforms
to investigate the transport and accumulation of PS-MPs
under dynamic flow conditions that mimic human physiol-
ogy [109].

Interdisciplinary Approaches and Biotechnological
Solutions

A multidisciplinary framework integrating polymer chemistry,
materials science, analytical chemistry, and toxicology is
essential for addressing the complexity of PS-MPs. This
collaborative effort can lead to the creation of comprehen-
sive reference materials and robust risk assessment tools.
Bioengineering microorganisms capable of degrading PS
is an emerging strategy. Genetic modification of bacteria
to express plastic-degrading enzymes offers potential for
bioremediation of PS-contaminated environments [110],
[111], [112].

Epidemiological Research and Biomonitoring
Long-term epidemiological studies are necessary to as-
sess the relationship between PS-MP exposure and chronic
diseases [126]. These studies should incorporate exposure
biomarkers, dose—response assessments, and stratification
of vulnerable populations. Effective biomonitoring requires
the development of standardized protocols for sample col-
lection, storage, and analysis. Establishing reference values
across different age groups and geographical regions is
critical for public health assessment.

Biomaterials and Nanotechnology Applications

Biomaterials engineering may support the development of
nanodevices, or particles designed to bind and eliminate
PS-MPs from biological systems. Similarly, nanomaterials
for environmental filtration and detoxification may offer vi-
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able solutions for mitigating PS-MP exposure [114], [115].
Bacterial nanorobots programmed to degrade PS-MPs are
a futuristic yet promising avenue. Engineered strains, es-
pecially those already prevalent in wastewater treatment
systems, could be modified to biodegrade polystyrene and
other persistent plastics.

Conclusions

Polystyrene microplastics (PS-MPs) represent a growing
concern for public health due to their capacity to accumulate
in vital organs and elicit a range of toxicological effects. Cur-
rent evidence confirms the presence of PS-MPs in human
blood, lungs, liver, kidneys, brain, and placenta—where
they contribute to oxidative stress, metabolic dysfunction,
and potentially carcinogenic outcomes. Research into PS-
MPs relies on a suite of advanced analytical methods,
including Raman spectroscopy, FTIR, pyrolysis-GC/MS,
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