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Abstract

This review paper is focused on the applications of 
polymeric blends in the biomedical field, with a particular 
emphasis on their use in wound healing and bone repair. 
The requirements for suitable materials in these areas arise 
from the complex mechanisms underlying the regeneration 
processes. Wound healing is characterized by four distinct 
phases: hemostasis, inflammation, cell proliferation, and 
remodeling. Similarly, bone healing also includes inflam-
mation, cell proliferation, and remodeling stages. Natural 
polymers are often favored for biomaterial fabrication due 
to their biocompatibility, whereas synthetic polymers are 
selected because of their superior mechanical properties 
and easy fabrication of different shapes. Natural polymers 
play a critical role in all phases of wound healing, owing to 
their advantageous characteristics. Polymeric blends have 
the potential to integrate beneficial attributes of both natural 
and synthetic polymers, thereby enhancing the efficacy of 
wound healing and bone repair processes. The blending 
of polymers can lead to improved properties, particularly 
mechanical strength, while mitigating the limitations asso-
ciated with individual polymers. A review of the scientific 
literature indicates a growing trend in research on polymer 
and biopolymer blends for potential applications across 
biomedical domains, specifically in areas related to wound 
healing, bone repair, and healthcare technology.

Keywords: wound healing, polymer blends, natural poly-
mers, synthetic polymers, bone repair, bone healing

Introduction 
Polymers are widely used in biomedical applications, and 

every year, many scientific papers are published regarding 
polymer modifications for specific uses. Natural polymers 
have the advantages of biocompatibility, and synthetic poly-
mers have excellent mechanical properties [1]. Toh et al.  
mentioned that individual polymers did not hold all the de-
sired properties for biomedical applications [2]. Bao et al. re-
ported the lack of good mechanical properties in the case of 
natural polymers [3]. However, several natural polymers are 
easy to modify [4]. Nyamweya described that polymer blend-
ing is essential to overcome the issues linked to individual 
polymers [5]. Kaur et al. reported that polymer blending is an 
economical process and may lead to interesting materials [6]. 
Basak et al. research mentioned the improved properties of 
polymer blends as compared to individual/raw polymers [7].  
Polymer blending can be defined as the mixing of polymers [8].  
It has been mentioned in the study conducted by Qin 
that the presence of at least two polymers is necessary 
for polymer blends fabrication [9]. Polymer blends may 
overcome limitations presented by single polymers [10,11]. 
Martinova and Lubasova mentioned polymer blending as 
a way of combining the characteristics of individual poly-
mers [12]. Toh et al. highlighted that polymer blending can 
achieve the target of enhanced mechanical properties [2].  
Afshar et al. research indicated that polymeric blending 
leads to improved physicochemical properties [13]. Several 
studies [14,15] have reported that natural polymers play  
a role in the mimicking of the extracellular matrix (ECM). This 
review paper discusses the latest achievements in the appli-
cations of polymer blends in wound healing and bone repair. 

Wound 
The wound is the discontinuation of the anatomical struc-

ture of the tissue and the disruption to the epithelial integrity 
of the skin. The wound's creation can be unintentional or 
intentional, as in accidents or in surgical incisions [16,17]. 
Maqsood has highlighted the two main types of wounds: 
acute and chronic. The main reason for the acute wound 
has been mentioned as the environmental factors that result 
in the traumatic injury. In the case of chronic wounds, the 
main concern highlighted in the study was metabolic disor-
der [18]. Atiyeh et al. [19] indicated that the wound healing 
process in acute wounds follows an order or a time. Falanga 
et al. [20] wrote their concern about chronic wounds that did 
not heal within the expected time frame. Pađen et al. [21] 
also reported that chronic wounds deviate from the normal 
healing timeframe. Dave [22] explained the classification 
of chronic wounds such as vascular ulcers, diabetic ulcers, 
and pressure ulcers. Santo et al. [23] expressed the major 
vascular ulcers as either arterial or venous. Arterial ulcers 
usually result from the lowest supply of blood [24], and 
they also attack pressure points [25]. Arterial ulcers leading 
cause is the deficiency of blood-tissue perfusion [26]. Perfu-
sion is the process responsible for maintaining the oxygen 
and nutrients supply through the blood to the tissue [27]. 
Venous ulcers are also called varicose or stasis ulcers [28]. 
Herman et al. described the four major types of wounds: 
class 1, class 2, class 3, and class 4 [29]. Class I wounds 
are expressed as the cleanest wounds by Gorvetzian et al. 
[30], and the absence of inflammation has been indicated 
in class I wounds. Class II has been highlighted as clean/
contaminated wounds by Onyekwelu et al. [31]. Smilanich 
et al. [32] mentioned that class III wounds are contaminated 
wounds. Takeda et al. [33] reported that class IV wounds 
are dirty-infected wounds. Obviously, each class of wounds 
requires specific materials for wound healing.
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Wound healing

Ambekar et al. [34] reported the four significant stages/
phases of wound healing: hemostasis, inflammation, cell 
proliferation, and remodeling. Peña et al. [35] also described 
the phases of wound healing. They reported the hemostasis 
phase as the clot formation phase and the cell proliferation 
phase as the new tissue formation phase. Versteeg et al. 
[36] mentioned that processes such as blood coagulation, 
activation of platelets, and vascular repair play a key role 
in hemostasis. Wang and Zhang [37] highlighted that in 
hemostasis, constriction of blood vessels encourages clot 
formation and discourages blood loss. The gathering of 
platelets supports the formation of the blood clot. Nurden 
et al. [38] also noted that platelets are prominent in prevent-
ing blood loss. Etulain [39] mentioned that platelets play an 
influential role in thrombosis. Huang et al. [40] summarized 
in their study that platelets promote hemostasis regulation 
by favoring blood coagulation. Ferrer-Raventós and Beyer 
[41] defined platelets as small blood cells that do not have 
a nucleus, so the authors termed it anucleated. Several 
studies [42-46] indicated the absence/lack of a nucleus in 
the case of platelets. Ashorobi et al. [47] defined thrombosis 
as the formation of a blood clot inside the blood vessel, 
which restricts the flow of blood. Parise [48] reported the 
megakaryocytes as the derivation source of platelets. Eldor 
et al. [49] discussed the function of megakaryocytes, and 
their primary function, like platelet assembly, was stressed 
in their study. Studies [50,51] presented megakaryocytes 
as precursor cells of platelets. 

Holzer-Geissler et al. [52] reported the significance of the 
inflammatory phase of wound healing in removing debris and 
pathogens from the wound site. In the inflammatory phase 
of wound healing, the recruitment of neutrophils occurs [53]. 
The inherent function of neutrophils is to play a defensive 
role, considering the immune response [54,55]. Pang et al. 
[56] described the role of macrophages in the inflammatory 
phase of wound healing and their well-known role during the 
initial phase of inflammation. Macrophages also play a role 
in the removal of dead cells. Ellis et al. [57] also mentioned 
that macrophages have a key role in disposing of toxic 
metabolites. Zhou et al. [58] indicated that macrophages 
are responsible for producing cytokines, chemokines, and 
growth factors. Ono et al. [59] reported that chemokines ac-
tivate leukocytes. Leukocyte is the widely used term for the 
white blood cells [60]. Ridiandries et al. [61] expressed the 
prime objective of chemokines to encourage and discourage 
angiogenesis. Cytokines are small proteins, and cytokines 
play a communicative role between cells [62]. Feghali et al.  
[63] reported the contributive role of cytokines like IL-1 in 
inflammation. Interleukins (ILs) have the capability to act as 
pro-inflammatory and anti-inflammatory [64]. Al-Qahtani et al.  
[65] highlighted the pro-inflammatory role of IL-1β, IL-6, 
and IL-12 in diseases such as sepsis, pneumonia, and 
tuberculosis, respectively. Cytokines such as IL-10, IL-1Ra, 
IL-4, and IL-13 show anti-inflammatory effects in diseases 
such as HIV infection, rheumatoid infection, allergies, and 
asthma, respectively. Mahmoud et al. [66] mentioned that 
IL-6 influenced fibrogenesis and angiogenesis during wound 
healing. Guth et al. [67] study indicated that the enhance-
ment of inflammation was based on mast cells. Studies 
[67-70] reported mast cells as innate immune cells.

Mercandetti et al. [71] mentioned the proliferation 
phase of wound healing, and it has been indicated 
that the proliferative phase of wound healing is mainly 
composed of fibroplasia, matrix deposition, angiogen-
esis, and re-epithelialization. The fibroblast located at the 
edges of the wound favors collagen synthesis to promote 
wound healing, and this process is termed as fibroplasia.  

Granulation tissue (derivation source fibroblast) and the 
extracellular matrix (ECM) collective combination have 
been termed fibroplasia in the study [72]. Steed discussed 
fibroplasia as the wound healing phase [73]. It has been 
indicated that fibroblasts are essential in maintaining the 
integrity of the extracellular matrix (ECM), growth factors, 
and skin remodeling. The fibroblast also plays a commu-
nicative role within cells [74]. Wu et al. [75] described the 
multipotent nature of mesenchymal stem cells. Multipotent 
stem cells tended to differentiate themselves into multiple 
stem cells [76]. The differentiation of stem cells leads to the 
generation of cells such as dermal fibroblast, keratinocytes, 
and endothelial cells [75]. Soliman et al. [77] reported that 
angiogenesis is a significant step in the proliferation phase 
of wound healing. Song et al. [78] defined angiogenesis as 
the process responsible for forming new blood vessels from 
existing blood vessels, which aims to maintain the transpor-
tation of proteins and nutrients. Schaper and Buschmann 
[79] termed angiogenesis simply as capillary sprouting. 
Salavati and Soltani [80] indicated that the proliferation of 
endothelial cells was vital for the extension of the sprouts 
network. Several studies [81-84] mentioned the pivotal role 
of vascular growth factor (VEGF) in angiogenesis. VEGF 
regulates/promotes angiogenesis in the case of wound 
healing [85,86]. The VEGF family mainly comprises the 
VEGF-A, -B, -C, -D, and the placental growth factor (PlGF) 
[87]. VEGF-A is of notable importance in the initial phase of 
angiogenesis, as it involves the migration and proliferation 
of endothelial cells [88]. VEGF-B is key to heart and muscle 
cell survival [89]. Saaristo et al. [90] found that VEGF-C ef-
fectively healed the diabetic mice's wound, and this wound 
healing happened due to lymph-angiogenesis. Bouanzoul 
and Rosen [91] described the lymph-angiogenesis role of 
VEGF-D. Leitch et al. [92] mentioned that VEGF-D promoted 
corneal angiogenesis. It has been indicated in several stud-
ies [93-96] that VEGF-D is also called c-Fos-induced growth 
factor (FIGF). Odorisio et al. highlighted the well-known role 
of placental growth factor (PlGF) in wound healing due to 
angiogenesis [97]. Yoo et al. [98] presented a detailed study 
mentioning that PlGF-1 and PlGF-2 boosted cell prolifera-
tion. The receptor vascular endothelial growth factor (VEGF) 
and its members are presented in FIG. 1.

The differentiation of stem cells also leads to keratino-
cytes [75,99], and keratinocyte proliferation is the leading 
promoter of re-epithelialization [100]. Amar and Wu [101] 
defined the re-epithelialization process as the migration and 
proliferation of keratinocytes that participate in the formation 
of the epithelium. The remodeling phase of wound healing is 
connected to the progression/transformation/development 
of the granulation tissue into the scar [102,103]. The prime 
objective of remodeling wound healing is to attain the target 
of maximized tensile strength [104]. Lux described the last 
phase of wound healing as the maturation phase [105].  
The remodeling phase of wound healing mainly focuses 
on the reorganization of collagen, and this reorganization 
happens from collagen III to collagen I [106]. 

FIG. 1. VEGF family and its members.
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Bone repair/healing 

Remedios discussed the composition of bone and clearly 
stated that the main components of bone are minerals (about 
70% of the bone composition). The remaining 30% of bone 
composition is linked with cells and the organic matrix [107]. 
Steppe et al. [108] mentioned the three significant stages of 
bone healing: inflammation, proliferation, and remodeling. 
Kalfas [109] described the initiation of the inflammatory 
phase of bone healing, and it has been stressed that the 
hematoma develops in the place of the fracture. Shiu et al.  
[110] reported the mechanism of hematoma, which has 
been presented as the formation of fibrin clots. Hematoma 
aims to prevent excessive bleeding. Inflammatory cells 
involved in bone healing are mast cells, neutrophils, and 
macrophages [111]. Mast cells play a role in the promotion 
of the release of inflammatory cytokines in the case of bone 
healing [112,113]. Zhang et al. [114] reported tumor necrosis 
factor-alpha (TNF-α) as an inflammatory cytokine for bone 
fracture healing. Torres et al. conducted a study on bone 
repair, and the pro-inflammatory cytokines mentioned in 
their research were IL-1, IL-6, and TNF-α [115]. IL-1 plays 
a regulative role in initiating the inflammation [116]. Bastian 
et al. [117] concluded from their study that neutrophils, in 
the case of bone regeneration, participated in the synthesis 
mechanism of the extracellular matrix (ECM). 

Primary fracture healing utilizes compression to recon-
nect fractured parts of the bone [118]. Oryan et al. [119] 
reported primary fracture healing as the direct fracture 
healing. Parker et al. [120] indicated that primary fracture 
healing did not involve callus formation.

Secondary fracture healing is based on callus formation, 
as highlighted in the study by Mori et al. [121]. Marsell and 
Einhorn [122] have expressed secondary fracture healing 
as indirect fracture healing. Studies [123,124] indicated the 
role of endothelial cells in the formation of the soft callus. 
The soft callus is referred to as a combination of fibrous and 
cartilaginous tissues. The main reason for the soft callus 
formation is reported as the differentiation of mesenchymal 
stem cells [125]. Kondi and Gowda emphasize that soft cal-
lus has primary responsibility in maintaining fracture stability 
[126]. López mentioned two processes for bone formation: 
direct and indirect. Direct bone formation is reported as 
intramembranous ossification. Indirect bone formation was 
termed in their study as endochondral ossification [127].  

The study indicated the different mechanisms of differentia-
tion of mesenchymal stem cells; it has been reported that if 
mesenchymal stem cells differentiate into osteoblasts, the 
mechanism of bone formation is termed intramembranous 
ossification. In the case of differentiation of mesenchymal 
stem cells to chondrocytes, then the mechanism of bone 
formation is termed as the endochondral ossification [123]. 
Intramembranous and endochondral ossification leads to the 
development of a hard callus [128]. Oryan et al. described 
that hard callus development led to the modification of the 
calcified cartilage into the woven bone [129]. The remodeling 
phase is mainly focused on the transformation of the woven 
bone to lamellar bone [130,131]. The significant charac-
teristics of lamellar bone is mentioned in several studies 
[132-135] as the organized collagen fiber layers. 

Polymer and biopolymer blends 
in wound healing 

Several polymers and biopolymers have so far been 
considered good materials for wound healing applications. 
One of the widely used biopolymers in biomedical fields is 
chitosan. Chitosan (CS) is a polysaccharide and is a poly-
mer of natural origin [136]. The pivotal derivative source of 
chitosan is chitin [137]. Kulka and Sionkowska [138] in the 
review paper presented a detailed study of chitosan and its 
applications in the biomedical and cosmetic fields. Regard-
ing chitosan biomedical applications, the highly considerable 
are wound-healing applications [139]. Zhang et al. [140] 
discussed the prominent role of chitosan for hemostasis due 
to its effective characteristics in preventing bleeding. Le et al.  
[141] mentioned in their study that chitosan is helpful in ef-
fectively removing bacteria from the wound; this is possible 
due to cell wall rigidity [142]. Azad et al. [143] described the 
chitosan role in the proliferation phase of wound healing, 
and it results in the form of proliferation of keratinocytes 
and fibroblasts [144]. Chitosan plays a well-known role in 
the remodeling phase of wound healing, as it leads to the 
enhancement of the tensile strength of the wound [145,146]. 
FIG. 2 represents the chitosan and its applications. Chitosan 
can also be used for the fabrication of polymeric blends for 
biomedical applications [1].

FIG. 2. Chitosan and its applications.
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Liu et al. conducted electrospinning of the chitosan, 

polyvinyl alcohol (PVA), mupirocin (MP), and cerium oxide 
nanoparticles (CeNPs). The authors stressed the antibacte-
rial nature of the electrospun membrane, which has been 
verified by in vivo and in vitro studies. The authors claimed 
that the prepared electrospun membrane was effective in 
the case of diabetic wounds [147]. Gobi and Babu fabricated 
the polymeric blend of PVA and CS with nickel oxide (NiO) 
using the solution casting method. It has been concluded 
from their research on wound healing applications that it 
presented better cell proliferation [148]. Abdelrazek et al. 
initially prepared the polymeric blend of CS and polyvinyl 
pyrrolidone (PVP) in the proportion of (20/80), respectively, 
the various weight percentages (0, 2.5, 5.0, 7.5, 10, 12.5) 
of copper oxide (CuO) nanoparticles have been combined 
to a polymeric blend of CS/PVP. The authors indicated the 
wound healing interest from this conducted research [149]. 
Fang et al. conducted a study on the polymeric blend of CS 
and polyethylene oxide (PEO), and the solution blow spin-
ning technique was utilized to prepare the nanofibers. The 
conducted research resulted in excellent hemostatic proper-
ties [150]. Not only chitosan is considered as wound healing 
material, but also several other polysaccharides, such as 
alginate, hyaluronic acid, fucoidan, and many others.

Kruk and Winnicka reported the natural origin of alginate 
[151]. The extraction source of alginate is brown seaweed, 
as indicated in several studies [152-155]. The commercially 
available form of alginate is sodium alginate, and sodium 
alginate solubility in water is reported by Adamiak and 
Sionkowska [156]. Ding et al. prepared sodium alginate (SA) 
and PVA in the proportion of (10/90), respectively, and from 
this prepared solution of SA/PVA, they took 8 wt/v% to blend 
with 0.5 wt/v% shikonin (SK). The electrospun nanofibers 
have been used for in vitro tests, which presented effective 
results for diabatic wounds [157]. Ilhan et al. prepared the 
polymeric blend of SA and polyethylene glycol with the sat-
ureja cuneifolia plant extract, and the blend was fabricated 
using 3D printing. The authors highlighted the antibacterial 
effect of the prepared wound scaffold in the case of dia-
betic wounds [158]. Gill et al. prepared the polymeric blend 
of SA and PVA mixed with the silver-ZnO nanoparticles.  
The prepared blend was analyzed in vitro, enhancing the 
wound healing rate. The addition of silver-ZnO nanoparticles 
led to the enhancement of antibacterial properties [159]. 

Hyaluronic acid also belongs to the natural polymer family 
[160]. Salih et al. presented a detailed insight into hyaluronic 
acid as a component of the extracellular matrix (ECM) and 
its vital role in skin tissue repair. Skin tissue repair effectively 
improves the wound healing rate [161]. Foroozandeh et al. 
have prepared a blend of nylon 6 (12 wt%) and hyaluronic 
acid (3 wt%). CS in various weight percentages: 1, 2, and 3 
have been added to the blend of hyaluronic acid and nylon 6,  
which were electrospun to prepare the nanofibers. They 
concluded that nanofibers from a blend of hyaluronic acid/
nylon 6/chitosan 2 wt% resulted in better mechanical prop-
erties and led to enhanced cell proliferation [162]. Hashemi 
et al. conducted the electrospinning of the polymeric blend 
of hyaluronic acid, chitosan, and polyurethane, and the 
prepared electrospun nanofibers presented enhanced cell 
proliferation of fibroblasts [163]. Increased cell proliferation 
enhances early wound healing [164].

Fucoidan is a sulphated polysaccharide, as reported in 
studies [165,166]. Wen et al. research mentioned the role of 
fucoidan in angiogenesis [167]. Perumal et al. prepared the 
polymeric blend of collagen and fucoidan, and the prepared 
polymer blend presented improved cell proliferation. Their 
study concluded that the addition of fucoidan to a polymeric 
blend improved thermal properties and hydrophilicity [168]. 

Egle et al. prepared the polymeric blend of chitosan (2%) and 
fucoidan (0.25%), and this polymeric blend was fabricated 
by lyophilization. The fabricated polymeric blend showed 
enhanced cell proliferation due to the presence of fucoidan 
[169]. Lu et al. prepared the wound dressing by blending 
fucoidan and gelatin. The prepared wound dressing material 
showed a reduction in inflammation. The prepared polymeric 
blend wound dressing also fastened wound healing [170]. 

Gajbhiye and Wairkar reported collagen as the essential 
part of the extracellular matrix (ECM) [171]. Sionkowska 
provided detailed insights into collagen blends, mainly with 
natural polymers, and the study indicated collagen applica-
tions in the biomedical and cosmetic fields [172]. Huang  
et al. also reported collagen biomedical applications, such 
as wound healing and cardiovascular treatments [173]. 
López et al. utilized electrospinning to produce a nanofibrous 
membrane based on a blend of collagen, chitosan, polyvinyl 
alcohol, and honey. They concluded that the prepared mem-
branes showed an antibacterial effect and recommended the 
prepared electrospun membranes for skin ulcers [174]. Tahir  
et al. indicated the valuable consideration of electrospun mate-
rials for biomedical applications such as wound healing [175]. 
      Munarin et al. highlighted the natural route of pectin [176], 
and pectin owns biodegradability and biocompatibility [177]. 
Sultana demonstrated the applications of pectin in wound 
healing [178]. Pectin-based hydrogels play an essential 
role in fibroblast proliferation [179]. Kaliaperumal and Thu-
lasisingh used electrospinning to prepare the electrospun 
nanofibers; they varied the concentrations of polycaprolac-
tone to 15%, 17%, and 19%. It has been highlighted that 
variation in concentrations led to an increase in mechanical 
strength. Chitosan and pectin have been shown to play  
a role in maintaining a moist environment and enhancing 
fibroblast proliferation [180]. 

It has been stressed that cellulose-based materials re-
duce environmental issues [181]. Hasanin recommended 
cellulose in biomedical applications, such as wound dressing 
on a larger scale [182], and provided that cellulose is low 
cost [183]. Sankarganesh et al. prepared a polymeric blend 
of cellulose and polyvinyl alcohol, and the authors recom-
mended a prepared blend for cancer-treated wounds [184]. 
Heparin is a natural polysaccharide and has been reported 
in Paluck’s research [185]. The studies by Sardo et al. 
indicate the role of heparin in collagen production. Heparin 
has also been reported to increase cell proliferation [186]. 
Roberts et al. prepared the blend of polyvinyl alcohol and 
heparin, and it has been concluded that the prepared blend 
promoted endothelial cell proliferation [187]. 

Polymer and biopolymer blends in bone 
repair

Polymer and biopolymer blends are also extensively 
investigated for applications in bone repair. Moghaddasi  
et al. developed a composite material consisting of polycap-
rolactone, polylactic acid and hydroxyapatite in mass ratios 
of 2:1:0.25, respectively. Additionally, varying concentrations 
of nigella oil (15%, 18%, and 20% by mass) were incorpo-
rated into the composite. Electrospinning was subsequently 
employed to fabricate nanofibers from the prepared blend, 
which demonstrated biocompatibility. The research also 
emphasized the antibacterial properties of the blend, and the 
authors proposed its application in bone healing, specifically 
in the context of bone tissue engineering [188]. 

Wu et al. designed the research on blending collagen, 
hydroxyapatite, propranolol, and PVA. The authors selected 
3D printing as the fabrication technique for the prepared 
blend, and the 3D printed scaffold presented bone regen-
eration properties in the case of in vitro research [189].  
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Åkerlund et al. prepared a polymeric blend of hyaluronic 
acid, polylactic acid, and polycaprolactone. The authors 
added 15 wt% of hydroxyapatite to the blend of polylactic 
acid and polycaprolactone. The weight percentage of hy-
droxyapatite was fixed, but the ratios of polylactic acid and 
polycaprolactone were 90:10, 80:20, and 70:30, respec-
tively. The fabrication of the blend was achieved using 3D 
printing, and the authors claimed that the blend had better 
mechanical and chemical properties. Due to the better me-
chanical properties, the authors claimed bone regeneration 
from this blend [190]. Shankar et al. conducted the lyophi-
lized method for collagen and gelatin with the addition of 
hydroxyapatite. Their research used collagen (10%), gelatin 
(10%), and hydroxyapatite (1%). The authors mentioned the 
blend for guided bone regeneration, and it was concluded 
in their research to analyze in vivo results [191].

Bibliometric analysis
To sum up our review, we have performed a bibliometric 

analysis. The data was analyzed using Scopus data from 
2000 to 2024; the terms “polymer” and “wound healing” 
were searched within the “Article title, Abstract, Keywords”.  

The obtained results were compared to the terms “polymer 
blend” and “wound healing” search. The results show that 
terms “polymer blend” and “wound healing” results are 
limited in comparison to “polymer” and “wound healing”. 
Research in this field is increasing annually, which shows the 
importance of the study in this field. The compared results 
are presented in the form of a graph in FIG. 3.

The terms “polymer” and “bone repair” were searched 
within “Article title, Abstract, Keywords.” The obtained results 
were compared to the terms “polymer blend” and “bone re-
pair” search. The results show that the results for “polymer 
blend” and “wound healing” are limited in comparison to 
“polymer” and “bone repair” terms. The compared results 
are presented in the form of a graph in FIG. 4.

The Scopus data files for the searched terms have been 
imported to the VOSviewer software. FIG. 5 analyzes the 
co-occurrence of all keywords in the data file of Scopus 
searched for the terms “polymer blend” and “wound healing”.  
FIG. 6 analyzes the co-occurrence of all keywords in the 
data file of Scopus searched for terms “polymer blend” and 
“bone repair”.

FIG. 3. Scopus (accessed on 9 December 2024) data of the number of publications over the years searched with the 
terms “polymer” and “wound healing” and compared to the results of terms “polymer blend” and “wound healing”. 

FIG. 4. Scopus (accessed on 09 December 2024) data of the number of publications over the years searched with 
the terms “polymer” and “bone repair” and compared to the results of terms “polymer blend” and “bone repair”.
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FIG. 5. VOSviewer bibliometric analysis of Scopus data (accessed on 09 December 2024) for terms “polymer 
blend” and “wound healing”. The analysis was based on the co-occurrence of all keywords.

FIG. 6. VOSviewer bibliometric analysis of Scopus data (accessed on 09 December 2024) for terms “polymer 
blend” and “bone repair”. The analysis was based on the co-occurrence of all keywords.
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Conclusions 

Based on the literature review, we can conclude that 
the number of papers regarding the applications of poly-
mer and biopolymer blends in biomedical applications has 
been increasing recently. Nevertheless, after checking the 
literature report regarding polymeric blends for bone healing/
repair, it has been observed that research is limited in this 
topic in comparison to applications of polymers in bone tis-
sue engineering. Polymeric blends of natural and synthetic 
polymers are important in wound healing to preserve the 
biological and mechanical strength of wound dressings. 
However, again after checking the literature report regarding 
polymeric blends for wound healing, it has been observed 
that there are much fewer reports on this topic in comparison 
to applications of polymers in wound healing.

In biomedical fields, there is an increasing need for the 
fabrication of new materials for both wound and bone heal-
ing, so new polymer and biopolymer blends are likely to be 
studied and proposed for further applications. 
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